When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Primitive abundant number - Wikipedia

    en.wikipedia.org/wiki/Primitive_abundant_number

    [1] [2] For example, 20 is a primitive abundant number because: The sum of its proper divisors is 1 + 2 + 4 + 5 + 10 = 22, so 20 is an abundant number. The sums of the proper divisors of 1, 2, 4, 5 and 10 are 0, 1, 3, 1 and 8 respectively, so each of these numbers is a deficient number. The first few primitive abundant numbers are:

  3. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...

  4. Lucas primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas_primality_test

    In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. [ 1 ] [ 2 ] It is the basis of the Pratt certificate that gives a concise verification that n is prime.

  5. Practical number - Wikipedia

    en.wikipedia.org/wiki/Practical_number

    The only odd practical number is 1, because if is an odd number greater than 2, then 2 cannot be expressed as the sum of distinct divisors of . More strongly, Srinivasan (1948) observes that other than 1 and 2, every practical number is divisible by 4 or 6 (or both).

  6. Fermat pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Fermat_pseudoprime

    In 1904, Cipolla showed how to produce an infinite number of pseudoprimes to base a > 1: let A = (a p - 1)/(a - 1) and let B = (a p + 1)/(a + 1), where p is a prime number that does not divide a(a 2 - 1). Then n = AB is composite, and is a pseudoprime to base a. [3] [4] For example, if a = 2 and p = 5, then A = 31, B = 11, and n = 341 is a ...

  7. Padovan sequence - Wikipedia

    en.wikipedia.org/wiki/Padovan_sequence

    The number of ways of writing n as a palindromic ordered sum in which no term is 2 is P(n). For example, P(6) = 4, and there are 4 ways to write 6 as a palindromic ordered sum in which no term is 2: 6 ; 3 + 3 ; 1 + 4 + 1 ; 1 + 1 + 1 + 1 + 1 + 1. The number of ways of writing n as an ordered sum in which each term is odd and greater than 1 is ...

  8. Jacobsthal number - Wikipedia

    en.wikipedia.org/wiki/Jacobsthal_number

    In mathematics, the Jacobsthal numbers are an integer sequence named after the German mathematician Ernst Jacobsthal.Like the related Fibonacci numbers, they are a specific type of Lucas sequence (,) for which P = 1, and Q = −2 [1] —and are defined by a similar recurrence relation: in simple terms, the sequence starts with 0 and 1, then each following number is found by adding the number ...

  9. Pythagorean prime - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_prime

    However, the number of Pythagorean primes up to is frequently somewhat smaller than the number of non-Pythagorean primes; this phenomenon is known as Chebyshev's bias. [1] For example, the only values of n {\displaystyle n} up to 600000 for which there are more Pythagorean than non-Pythagorean odd primes less than or equal to n are 26861 and 26862.