Search results
Results From The WOW.Com Content Network
In engineering, a factor of safety (FoS) or safety factor (SF) expresses how much stronger a system is than it needs to be for an intended load.Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure's ability to carry a load must be determined to a reasonable accuracy.
A load case is a combination of different types of loads with safety factors applied to them. A structure is checked for strength and serviceability against all the load cases it is likely to experience during its lifetime. Typical load cases for design for strength (ultimate load cases; ULS) are: 1.2 x Dead Load + 1.6 x Live Load
The first of the cooling load factors used in this method is the CLTD, or the Cooling Load Temperature Difference. This factor is used to represent the temperature difference between indoor and outdoor air with the inclusion of the heating effects of solar radiation. [1] [5] The second factor is the CLF, or the cooling load factor.
Limit State Design (LSD), also known as Load And Resistance Factor Design (LRFD), refers to a design method used in structural engineering. A limit state is a condition of a structure beyond which it no longer fulfills the relevant design criteria. [ 1 ]
For example, in designing a staircase, a dead load factor may be 1.2 times the weight of the structure, and a live load factor may be 1.6 times the maximum expected live load. These two "factored loads" are combined (added) to determine the "required strength" of the staircase.
A factor of safety is a design criteria that an engineered component or structure must achieve. = /, where FS: the factor of safety, Rf The applied stress, and F: ultimate allowable stress (psi or MPa) [13] Margin of Safety is the common method for design criteria. It is defined MS = P u /P − 1.
A crane's rated load is its Safe Working Load (SWL) and the design load (DL) is, (p 90) [1] = The dynamic lift factor for offshore cranes in the range 10 kN < SWL ≤ 2500 kN is not less than =.(p 84) [1] Thus for a crane with a SWL of 2000 kN (~200 tonne) its design load is not less than, = = The minimum breaking load (MBL) for the combined capacity of reeves of a steel wire hoisting rope ...
A dynamic load can have a significantly larger effect than a static load of the same magnitude due to the structure's inability to respond quickly to the loading (by deflecting). The increase in the effect of a dynamic load is given by the dynamic amplification factor (DAF) or dynamic load factor (DLF):