When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Near and far field - Wikipedia

    en.wikipedia.org/wiki/Near_and_far_field

    Differences between Fraunhofer diffraction and Fresnel diffraction. The near field itself is further divided into the reactive near field and the radiative near field. The reactive and radiative near-field designations are also a function of wavelength (or distance).

  3. Fresnel diffraction - Wikipedia

    en.wikipedia.org/wiki/Fresnel_diffraction

    Fresnel diffraction of circular aperture, plotted with Lommel functions. This is the Fresnel diffraction integral; it means that, if the Fresnel approximation is valid, the propagating field is a spherical wave, originating at the aperture and moving along z. The integral modulates the amplitude and phase of the spherical wave.

  4. Fraunhofer diffraction - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction

    In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance (a distance satisfying Fraunhofer condition) from the object (in the far-field region), and also when it is viewed at the focal plane of an imaging lens.

  5. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    The Fraunhofer and Fresnel limits exist for these as well, although they correspond more to approximations for the matter wave Green's function [19] for the Schrödinger equation. [ 20 ] [ 21 ] More common is full multiple scattering models particular in electron diffraction ; [ 22 ] in some cases similar multiple scattering models are also ...

  6. Fresnel zone - Wikipedia

    en.wikipedia.org/wiki/Fresnel_zone

    Fresnel zone: D is the distance between the transmitter and the receiver; r is the radius of the first Fresnel zone (n=1) at point P. P is d1 away from the transmitter, and d2 away from the receiver. The concept of Fresnel zone clearance may be used to analyze interference by obstacles near the path of a radio beam. The first zone must be kept ...

  7. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    The result is the Fraunhofer approximation, which is only valid very far away from the object + + Depending on the size of the diffraction object, the distance to the object and the wavelength of the wave, the Fresnel approximation, the Fraunhofer approximation or neither approximation may be valid. As the distance between the measured point of ...

  8. Fresnel number - Wikipedia

    en.wikipedia.org/wiki/Fresnel_number

    The Fresnel number is a useful concept in physical optics. The Fresnel number establishes a coarse criterion to define the near and far field approximations. Essentially, if Fresnel number is small – less than roughly 1 – the beam is said to be in the far field. If Fresnel number is larger than 1, the beam is said to be near field. However ...

  9. Rayleigh distance - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_distance

    In antenna applications, the Rayleigh distance is often given as four times this value, i.e. = [1] which corresponds to the border between the Fresnel and Fraunhofer regions and denotes the distance at which the beam radiated by a reflector antenna is fully formed (although sometimes the Rayleigh distance it is still given as per the optical ...