When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Magnitude (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(mathematics)

    By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.

  3. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    Vectors also describe many other physical quantities, such as linear displacement, displacement, linear acceleration, angular acceleration, linear momentum, and angular momentum. Other physical vectors, such as the electric and magnetic field, are represented as a system of vectors at each point of a physical space; that is, a vector field ...

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.

  5. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  6. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    Given two unit vectors, their cross product has a magnitude of 1 if the two are perpendicular and a magnitude of zero if the two are parallel. The dot product of two unit vectors behaves just oppositely: it is zero when the unit vectors are perpendicular and 1 if the unit vectors are parallel.

  7. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    The dot product of two vectors can be defined as the product of the magnitudes of the two vectors and the cosine of the angle between the two vectors. Thus, a ⋅ b = | a | | b | cos ⁡ θ {\displaystyle \mathbf {a} \cdot \mathbf {b} =|\mathbf {a} |\,|\mathbf {b} |\cos \theta } Alternatively, it is defined as the product of the projection of ...

  8. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    In exterior algebra and geometric algebra the exterior product of two vectors is a bivector, while the exterior product of three vectors is a trivector. A bivector is an oriented plane element and a trivector is an oriented volume element, in the same way that a vector is an oriented line element. Given vectors a, b and c, the product

  9. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    The set of vectors whose 1-norm is a given constant forms the surface of a cross polytope, which has dimension equal to the dimension of the vector space minus 1. The Taxicab norm is also called the ℓ 1 {\displaystyle \ell ^{1}} norm .