Search results
Results From The WOW.Com Content Network
GDoQ: GDoQ (Prediction of GLMU inhibitors using QSAR and AutoDock) is an open source platform for predicting inhibitors against Mycobacterium tuberculosis (M.Tb) drug target N-acetylglucosamine-1-phosphate uridyltransferase (GLMU) protein. This is a potential drug target involved in bacterial cell wall synthesis.
The phrase "drug design" is similar to ligand design (i.e., design of a molecule that will bind tightly to its target). [6] Although design techniques for prediction of binding affinity are reasonably successful, there are many other properties, such as bioavailability, metabolic half-life, and side effects, that first must be optimized before a ligand can become a safe and effictive drug.
Druggability is a term used in drug discovery to describe a biological target (such as a protein) that is known to or is predicted to bind with high affinity to a drug. Furthermore, by definition, the binding of the drug to a druggable target must alter the function of the target with a therapeutic benefit to the patient.
This choice would aid drug-discovery for the selected targets, as well as the development of both ligand-based and structure-based methods of computational ligand-design. This is the current focus of BindingDB, which is led by Michael Gilson , based at UC San Diego 's Skaggs School of Pharmacy and Pharmaceutical Sciences , and supported by a ...
Structure-based virtual screening approach includes different computational techniques that consider the structure of the receptor that is the molecular target of the investigated active ligands. Some of these techniques include molecular docking, structure-based pharmacophore prediction, and molecular dynamics simulations.
Machine-learning scoring functions have consistently been found to outperform classical scoring functions at binding affinity prediction of diverse protein-ligand complexes. [17] [18] This has also been the case for target-specific complexes, [19] [20] although the advantage is target-dependent and mainly depends on the volume of relevant data ...
The small molecule (NVS-SM2) enhances recognition of SMN2 transcripts by U1-U2 specifically by enhancing the affinity of U1 to the 5'-splice site of SMN exon 7. [13] There are limited examples of small molecules that target RNA and are approved drugs for the treatment of human disease.
This approach is known as "reverse pharmacology" or "target based drug discovery" (TDD). [5] However recent statistical analysis reveals that a disproportionate number of first-in-class drugs with novel mechanisms of action come from phenotypic screening [6] which has led to a resurgence of interest in this method. [1] [7] [8]