When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    These edges form square faces, making the dihedral angle of a cube between every two adjacent squares being the interior angle of a square, 90°. Hence, the cube has six faces, twelve edges, and eight vertices. [2] Because of such properties, it is categorized as one of the five Platonic solids, a polyhedron in which all the regular polygons ...

  3. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Doubling the cube is the construction, using only a straightedge and compass, of the edge of a cube that has twice the volume of a cube with a given edge. This is impossible because the cube root of 2, though algebraic, cannot be computed from integers by addition, subtraction, multiplication, division, and taking square roots.

  4. Doubling the cube - Wikipedia

    en.wikipedia.org/wiki/Doubling_the_cube

    In algebraic terms, doubling a unit cube requires the construction of a line segment of length x, where x 3 = 2; in other words, x = , the cube root of two. This is because a cube of side length 1 has a volume of 1 3 = 1 , and a cube of twice that volume (a volume of 2) has a side length of the cube root of 2.

  5. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. [1] In a polygon, an edge is a line segment on the boundary, [2] and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides ...

  6. Dual polyhedron - Wikipedia

    en.wikipedia.org/wiki/Dual_polyhedron

    The dual of a cube is an octahedron.Vertices of one correspond to faces of the other, and edges correspond to each other. In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. [1]

  7. Octahedral symmetry - Wikipedia

    en.wikipedia.org/wiki/Octahedral_symmetry

    D 2d, [2 +,4], (2*2): if one face has a line segment dividing the face into two equal rectangles, and the opposite has the same in perpendicular direction, the cube has 8 isometries; there is a symmetry plane and 2-fold rotational symmetry with an axis at an angle of 45° to that plane, and, as a result, there is also another symmetry plane ...

  8. Cuboid - Wikipedia

    en.wikipedia.org/wiki/Cuboid

    A rectangular cuboid (sometimes also called a "cuboid") has all right angles and equal opposite rectangular faces. Etymologically, "cuboid" means "like a cube ", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces).

  9. Keller's conjecture - Wikipedia

    en.wikipedia.org/wiki/Keller's_conjecture

    In this tiling of the plane by congruent squares, the green and violet squares meet edge-to-edge as do the blue and orange squares. In geometry, Keller's conjecture is the conjecture that in any tiling of n-dimensional Euclidean space by identical hypercubes, there are two hypercubes that share an entire (n − 1)-dimensional face with each other.