When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Neutron economy - Wikipedia

    en.wikipedia.org/wiki/Neutron_economy

    Neutron economy is defined as the ratio of excess neutron production divided by the rate of fission. [1] [2] The numbers are a weighted average based primarily on the energies of the neutrons. Nuclear fission is a process in which the nuclei of atoms are split apart.

  3. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    The greater the number of protons, the more neutrons are required to stabilize a nuclide; nuclides with larger values for Z require an even larger number of neutrons, N > Z, to be stable. The valley of stability is formed by the negative of binding energy, the binding energy being the energy required to break apart the nuclide into its proton ...

  4. Even and odd atomic nuclei - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_atomic_nuclei

    Only five stable nuclides contain both an odd number of protons and an odd number of neutrons. The first four "odd–odd" nuclides occur in low mass nuclides, for which changing a proton to a neutron or vice versa would lead to a very lopsided proton–neutron ratio (2 1 H, 6 3 Li, 10 5 B, and 14 7 N; spins 1, 1, 3, 1).

  5. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    Nuclear binding energy can be computed from the difference in mass of a nucleus, and the sum of the masses of the number of free neutrons and protons that make up the nucleus. Once this mass difference, called the mass defect or mass deficiency, is known, Einstein's mass–energy equivalence formula E = mc 2 can be used to compute the binding ...

  6. Stable nuclide - Wikipedia

    en.wikipedia.org/wiki/Stable_nuclide

    Conversely, of the 251 known stable nuclides, only five have both an odd number of protons and odd number of neutrons: hydrogen-2 , lithium-6, boron-10, nitrogen-14, and tantalum-180m. Also, only four naturally occurring, radioactive odd–odd nuclides have a half-life >10 9 years: potassium-40 , vanadium-50 , lanthanum-138 , and lutetium-176 .

  7. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    The electron configuration is determined by the charge of the nucleus, which is determined by the number of protons, or atomic number. The number of neutrons is the neutron number. Neutrons do not affect the electron configuration. Atoms of a chemical element that differ only in neutron number are called isotopes.

  8. Mass excess - Wikipedia

    en.wikipedia.org/wiki/Mass_excess

    The mass excess of a nuclide is the difference between its actual mass and its mass number in daltons.It is one of the predominant methods for tabulating nuclear mass. The mass of an atomic nucleus is well approximated (less than 0.1% difference for most nuclides) by its mass number, which indicates that most of the mass of a nucleus arises from mass of its constituent protons and neutrons.

  9. Four factor formula - Wikipedia

    en.wikipedia.org/wiki/Four_factor_formula

    The symbols are defined as: [3], and are the average number of neutrons produced per fission in the medium (2.43 for uranium-235). and are the microscopic fission and absorption thermal cross sections for fuel, respectively.

  1. Related searches can equity value be negative divided by the number of neutrons in atoms

    how many neutrons for stabilityneutron stability chart
    neutron line of stability