Search results
Results From The WOW.Com Content Network
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
i = p i, so they are all 0 or 1. If R(x) = r n−1 x n−1 + ⋯ + r 1 x + r 0 is any nonzero polynomial modulo 2 with at most t nonzero coefficients, then R(x) is not a multiple of P(x) modulo 2. [Notes 4] If follows that the corresponding hash function will map keys with fewer than t bits in common to unique indices. [3]: 542–543
In decision theory, the weighted sum model (WSM), [1] [2] also called weighted linear combination (WLC) [3] or simple additive weighting (SAW), [4] is the best known and simplest multi-criteria decision analysis (MCDA) / multi-criteria decision making method for evaluating a number of alternatives in terms of a number of decision criteria.
For example, in the expression (f(x)-1)/(f(x)+1), the function f cannot be called only once with its value used two times since the two calls may return different results. Moreover, in the few languages which define the order of evaluation of the division operator's operands, the value of x must be fetched again before the second call, since ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
For example, 5 is a lower bound for the set S = {5, 8, 42, 34, 13934} (as a subset of the integers or of the real numbers, etc.), and so is 4. On the other hand, 6 is not a lower bound for S since it is not smaller than every element in S. 13934 and other numbers x such that x ≥ 13934 would be an upper bound for S.
As a consequence, arctan(1) is intuitively related to several values: π /4, 5 π /4, −3 π /4, and so on. We can treat arctan as a single-valued function by restricting the domain of tan x to − π /2 < x < π /2 – a domain over which tan x is monotonically increasing. Thus, the range of arctan(x) becomes − π /2 < y < π /2.