When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gravitational potential - Wikipedia

    en.wikipedia.org/wiki/Gravitational_potential

    The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.

  3. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.

  4. Gauss's law for gravity - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_gravity

    In radially symmetric systems, the gravitational potential is a function of only one variable (namely, = | |), and Poisson's equation becomes (see Del in cylindrical and spherical coordinates): = while the gravitational field is: =.

  5. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    The associated potential is the gravitational potential, often denoted by or , corresponding to the energy per unit mass as a function of position. The gravitational potential energy of two particles of mass M and m separated by a distance r is U = − G M m r . {\displaystyle U=-{\frac {GMm}{r}}.}

  6. Negative energy - Wikipedia

    en.wikipedia.org/wiki/Negative_energy

    Gravitational energy, or gravitational potential energy, is the potential energy a massive object has because it is within a gravitational field. In classical mechanics , two or more masses always have a gravitational potential .

  7. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...

  8. Schrödinger–Newton equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger–Newton_equation

    The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own ...

  9. Scalar potential - Wikipedia

    en.wikipedia.org/wiki/Scalar_potential

    Gravitational potential well of an increasing mass where F = –∇P Scalar potentials play a prominent role in many areas of physics and engineering. The gravity potential is the scalar potential associated with the gravity per unit mass, i.e., the acceleration due to the field, as a function of position.