Search results
Results From The WOW.Com Content Network
The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.
If units of degrees are intended, the degree sign must be explicitly shown (sin x°, cos x°, etc.). Using this standard notation, the argument x for the trigonometric functions satisfies the relationship x = (180 x / π )°, so that, for example, sin π = sin 180° when we take x = π .
The formulas for addition and subtraction involving a small angle may be used for interpolating between trigonometric table values: Example: sin(0.755) = (+) + () + () where the values for sin(0.75) and cos(0.75) are obtained from trigonometric table. The result is accurate to the four digits given.
In radians, one would require that 0° ≤ x ≤ π/2, that x/π be rational, and that sin(x) be rational. The conclusion is then that the only such values are sin(0) = 0, sin(π/6) = 1/2, and sin(π/2) = 1. The theorem appears as Corollary 3.12 in Niven's book on irrational numbers. [2] The theorem extends to the other trigonometric functions ...
The fixed point iteration x n+1 = cos(x n) with initial value x 0 = −1 converges to the Dottie number. Zero is the only real fixed point of the sine function; in other words the only intersection of the sine function and the identity function is =.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
s 0 = 0 c n+1 = w r c n − w i s n s n+1 = w i c n + w r s n. for n = 0, ..., N − 1, where w r = cos(2π/N) and w i = sin(2π/N). These two starting trigonometric values are usually computed using existing library functions (but could also be found e.g. by employing Newton's method in the complex plane to solve for the primitive root of z N ...