When.com Web Search

  1. Ad

    related to: chromatic polynomial examples parts of text structure answer

Search results

  1. Results From The WOW.Com Content Network
  2. Chromatic polynomial - Wikipedia

    en.wikipedia.org/wiki/Chromatic_polynomial

    The chromatic polynomial is a graph polynomial studied in algebraic graph theory, a branch of mathematics. It counts the number of graph colorings as a function of the number of colors and was originally defined by George David Birkhoff to study the four color problem .

  3. Chromatic symmetric function - Wikipedia

    en.wikipedia.org/wiki/Chromatic_symmetric_function

    The chromatic symmetric function is a symmetric function invariant of graphs studied in algebraic graph theory, a branch of mathematics. It is the weight generating function for proper graph colorings , and was originally introduced by Richard Stanley as a generalization of the chromatic polynomial of a graph.

  4. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    The choosability (or list colorability or list chromatic number) ch(G) of a graph G is the least number k such that G is k-choosable. More generally, for a function f assigning a positive integer f ( v ) to each vertex v , a graph G is f -choosable (or f -list-colorable ) if it has a list coloring no matter how one assigns a list of f ( v ...

  5. Algebraic graph theory - Wikipedia

    en.wikipedia.org/wiki/Algebraic_graph_theory

    Finally, the third branch of algebraic graph theory concerns algebraic properties of invariants of graphs, and especially the chromatic polynomial, the Tutte polynomial and knot invariants. The chromatic polynomial of a graph, for example, counts the number of its proper vertex colorings.

  6. Mixed graph - Wikipedia

    en.wikipedia.org/wiki/Mixed_graph

    If such a k-coloring exists, then we refer to the smallest k needed in order to properly color our graph as the chromatic number, denoted by χ(G). [2] The number of proper k -colorings is a polynomial function of k called the chromatic polynomial of our graph G (by analogy with the chromatic polynomial of undirected graphs) and can be denoted ...

  7. Graph polynomial - Wikipedia

    en.wikipedia.org/wiki/Graph_polynomial

    Important graph polynomials include: The characteristic polynomial, based on the graph's adjacency matrix. The chromatic polynomial, a polynomial whose values at integer arguments give the number of colorings of the graph with that many colors. The dichromatic polynomial, a 2-variable generalization of the chromatic polynomial

  8. Greedy coloring - Wikipedia

    en.wikipedia.org/wiki/Greedy_coloring

    The right example generalises to 2-colorable graphs with n vertices, where the greedy algorithm expends n/2 colors. In the study of graph coloring problems in mathematics and computer science , a greedy coloring or sequential coloring [ 1 ] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the ...

  9. Graph property - Wikipedia

    en.wikipedia.org/wiki/Graph_property

    An example graph, with the properties of being planar and being connected, and with order 6, size 7, diameter 3, girth 3, vertex connectivity 1, and degree sequence <3, 3, 3, 2, 2, 1> In graph theory , a graph property or graph invariant is a property of graphs that depends only on the abstract structure, not on graph representations such as ...