When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    Transformation matrix. In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then for some matrix , called the transformation matrix of . [citation needed] Note that has rows and columns, whereas the transformation is from to .

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    hide. In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called ...

  4. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    If the linear transformation is expressed in the form of an n by n matrix A, then the eigenvalue equation for a linear transformation above can be rewritten as the matrix multiplication =, where the eigenvector v is an n by 1 matrix. For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix—for example by diagonalizing it.

  6. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    Finding eigenvalues with the Arnoldi iteration. The idea of the Arnoldi iteration as an eigenvalue algorithm is to compute the eigenvalues in the Krylov subspace. The eigenvalues of Hn are called the Ritz eigenvalues. Since Hn is a Hessenberg matrix of modest size, its eigenvalues can be computed efficiently, for instance with the QR algorithm ...

  7. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    QR algorithm. In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix. The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently. [1][2][3] The basic idea is to perform ...

  8. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    Power iteration. In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix , the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, .

  9. Rayleigh quotient - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_quotient

    In mathematics, the Rayleigh quotient[1] (/ ˈreɪ.li /) for a given complex Hermitian matrix and nonzero vector is defined as: [2][3] For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose to the usual transpose . Note that for any non-zero scalar .