Ad
related to: sphere three dimensions calculator with diameter and radius x
Search results
Results From The WOW.Com Content Network
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they ...
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
S 3: a 3-sphere is a sphere in 4-dimensional Euclidean space. Spheres for n > 2 are sometimes called hyperspheres. The n-sphere of unit radius centered at the origin is denoted S n and is often referred to as "the" n-sphere. The ordinary sphere is a 2-sphere, because it is a 2-dimensional surface which is embedded in 3-dimensional space.
In mathematics, a unit sphere is a sphere of unit radius: the set of points at Euclidean distance 1 from some center point in three-dimensional space. More generally, the unit n {\displaystyle n} -sphere is an n {\displaystyle n} -sphere of unit radius in ( n + 1 ) {\displaystyle (n+1)} - dimensional Euclidean space ; the unit circle is a ...
In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center. In the intrinsic approach, a great circle is a geodesic; a shortest path between any two of its points provided they are close enough. Or, in the (also intrinsic) axiomatic approach analogous to Euclid's axioms of plane ...
A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a ...
In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter ) ( D {\displaystyle D} ) is twice the equivalent radius.
Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius in the x-y plane.