Search results
Results From The WOW.Com Content Network
A circular chromosome is a chromosome in bacteria, archaea, mitochondria, and chloroplasts, in the form of a molecule of circular DNA, unlike the linear chromosome of most eukaryotes. Most prokaryote chromosomes contain a circular DNA molecule. This has the major advantage of having no free ends to the DNA.
Bacteria do not have a membrane-bound nucleus, and their genetic material is typically a single circular bacterial chromosome of DNA located in the cytoplasm in an irregularly shaped body called the nucleoid. [68] The nucleoid contains the chromosome with its associated proteins and RNA.
Most bacterial chromosomes are circular, although some examples of linear chromosomes exist (e.g. Borrelia burgdorferi). Usually, a single bacterial chromosome is present, although some species with multiple chromosomes have been described. [5]
Among the many lines of evidence supporting symbiogenesis are that mitochondria and plastids contain their own chromosomes and reproduce by splitting in two, parallel but separate from the sexual reproduction of the rest of the cell; that the chromosomes of some mitochondria and plastids are single circular DNA molecules similar to the circular ...
Like the bacteria they originated from, mitochondria and chloroplasts have a circular chromosome. Unlike prokaryotes where exon-intron organization of protein coding genes exists but is rather exceptional, eukaryotes generally have these features in their genes and their genomes contain variable amounts of repetitive DNA.
Bacteria are classified by their shape. Bacteria have been on this planet for approximately 3.5 billion years, and are classified by their shape. [9] Bacterial genetics studies the mechanisms of their heritable information, their chromosomes, plasmids, transposons, and phages.
The haploid circular chromosome in E. coli consists of ~ 4.6 x 10 6 bp. If DNA is relaxed in the B form, it would have a circumference of ~1.5 millimeters (0.332 nm x 4.6 x 10 6). However, a large DNA molecule such as the E. coli chromosomal DNA does not remain a straight rigid molecule in a suspension. [5]
A) Circular bacterial chromosomes contain a cis-acting element, the replicator, that is located at or near replication origins. i) The replicator recruits initiator proteins in a DNA sequence-specific manner, which results in melting of the DNA helix and loading of the replicative helicase onto each of the single DNA strands (ii).