Search results
Results From The WOW.Com Content Network
Eukaryotic chromosome structure refers to the levels of packaging from raw DNA molecules to the chromosomal structures seen during metaphase in mitosis or meiosis. Chromosomes contain long strands of DNA containing genetic information. Compared to prokaryotic chromosomes, eukaryotic chromosomes are much larger in size and are linear chromosomes.
The major structures in DNA compaction: DNA, the nucleosome, the 11 nm beads on a string chromatin fibre and the metaphase chromosome. Chromatin is a complex of DNA and protein found in eukaryotic cells. [1]
Throughout the eukaryotic kingdom, the overall structure of chromosome ends is conserved and is characterized by the telomeric tract - a series of short G-rich repeats. This is succeeded by an extensive subtelomeric region consisting of various types and lengths of repeats - the telomere associated sequences (TAS). [ 1 ]
This structure is, however, dynamic and is maintained and remodeled by the actions of a range of histone-like proteins, which associate with the bacterial chromosome. [29] In archaea, the DNA in chromosomes is even more organized, with the DNA packaged within structures similar to eukaryotic nucleosomes. [30] [31]
In biology, the chromosome scaffold is the backbone that supports the structure of the chromosomes. It is composed of a group of non-histone proteins that are essential in the structure and maintenance of eukaryotic chromosomes throughout the cell cycle. These scaffold proteins are responsible for the condensation of chromatin during mitosis. [1]
Eukaryotic cells have a variety of internal membrane-bound structures, called organelles, and a cytoskeleton which defines the cell's organization and shape. The nucleus stores the cell's DNA , which is divided into linear bundles called chromosomes ; [ 19 ] these are separated into two matching sets by a microtubular spindle during nuclear ...
The solenoid structure can increase this to be 40 times smaller. [2] When DNA is compacted into the solenoid structure can still be transcriptionally active in certain areas. [7] It is the secondary chromatin structure that is important for this transcriptional repression as in vivo active genes are assembled in large tertiary chromatin ...
Eukaryotic DNA must be tightly compacted in order to fit within the confined space of the nucleus. Chromosomes are packaged by wrapping 147 nucleotides around an octamer of histone proteins, forming a nucleosome. The nucleosome octamer includes two copies of each histone H2A, H2B, H3, and H4.