Ad
related to: next generation sequencing history definition
Search results
Results From The WOW.Com Content Network
This design is very different from that of Sanger sequencing—also known as capillary sequencing or first-generation sequencing—which is based on electrophoretic separation of chain-termination products produced in individual sequencing reactions. [6] This methodology allows sequencing to be completed on a larger scale. [7]
The first of the high-throughput sequencing technologies, massively parallel signature sequencing (or MPSS, also called next generation sequencing), was developed in the 1990s at Lynx Therapeutics, a company founded in 1992 by Sydney Brenner and Sam Eletr. MPSS was a bead-based method that used a complex approach of adapter ligation followed by ...
Prior to this, only transcriptomes of organisms that were of broad interest and utility to scientific research were sequenced; however, these developed in 2010s high-throughput sequencing (also called next-generation sequencing) technologies are both cost- and labor- effective, and the range of organisms studied via these methods is expanding. [2]
RNA-Seq (named as an abbreviation of RNA sequencing) is a technique that uses next-generation sequencing to reveal the presence and quantity of RNA molecules in a biological sample, providing a snapshot of gene expression in the sample, also known as transcriptome.
Illumina produces a number of next-generation sequencing machines using technology acquired from Manteia Predictive Medicine and developed by Solexa. [19] Illumina makes a number of next generation sequencing machines using this technology including the HiSeq, Genome Analyzer IIx, MiSeq and the HiScanSQ, which can also process microarrays. [20]
The shotgun strategy is still applied today, however using other sequencing technologies, such as short-read sequencing and long-read sequencing. Short-read or "next-gen" sequencing produces shorter reads (anywhere from 25–500bp) but many hundreds of thousands or millions of reads in a relatively short time (on the order of a day). [18]
Like typical next-generation sequencing experiments, single-cell sequencing protocols generally contain the following steps: isolation of a single cell, nucleic acid extraction and amplification, sequencing library preparation, sequencing, and bioinformatic data analysis. It is more challenging to perform single-cell sequencing than sequencing ...
Clinical metagenomic next-generation sequencing (mNGS) is the comprehensive analysis of microbial and host genetic material (DNA or RNA) in clinical samples from patients by next-generation sequencing.