Search results
Results From The WOW.Com Content Network
A cone with a region including its apex cut off by a plane is called a truncated cone; if the truncation plane is parallel to the cone's base, it is called a frustum. [1] An elliptical cone is a cone with an elliptical base. [1] A generalized cone is the surface created by the set of lines passing through a vertex and every point on a boundary ...
A right frustum is a right pyramid or a right cone truncated perpendicularly to its axis; [3] otherwise, it is an oblique frustum. In a truncated cone or truncated pyramid, the truncation plane is not necessarily parallel to the cone's base, as in a frustum.
Hypertruncation A form of truncation that goes past the rectification, inverting the original edges, and causing self-intersections to appear. Quasitruncation A form of truncation that goes even farther than hypertruncation where the inverted edge becomes longer than the original edge. It can be generated from the original polytope by treating ...
Truncated cubic prism, Truncated octahedral prism, Cuboctahedral prism, Rhombicuboctahedral prism, Truncated cuboctahedral prism, Snub cubic prism; Truncated dodecahedral prism, Truncated icosahedral prism, Icosidodecahedral prism, Rhombicosidodecahedral prism, Truncated icosidodecahedral prism, Snub dodecahedral prism; Uniform antiprismatic prism
On engineering drawings, the projection is denoted by an international symbol representing a truncated cone in either first-angle or third-angle projection, as shown by the diagram on the right. The 3D interpretation is a solid truncated cone, with the small end pointing toward the viewer. The front view is, therefore, two concentric circles.
This page was last edited on 19 September 2023, at 03:07 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The black boundaries of the colored regions are conic sections. Not shown is the other half of the hyperbola, which is on the unshown other half of the double cone. Conic sections visualized with torch light This diagram clarifies the different angles of the cutting planes that result in the different properties of the three types of conic section.
For example, a chamfered cube, cC, can be constructed as t 4 daC, as a rhombic dodecahedron, daC or jC, with its degree-4 vertices truncated. A lofted cube, lC is the same as t 4 kC. A quinto-dodecahedron, qD can be constructed as t 5 daaD or t 5 deD or t 5 oD, a deltoidal hexecontahedron, deD or oD, with its degree-5 vertices truncated.