When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Resonance (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Resonance_(chemistry)

    Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.

  3. Clar's rule - Wikipedia

    en.wikipedia.org/wiki/Clar's_rule

    Clar's rule states that for a benzenoid polycyclic aromatic hydrocarbon (i.e. one with only hexagonal rings), the resonance structure with the largest number of disjoint aromatic π-sextets is the most important to characterize its chemical and physical properties. Such a resonance structure is called a Clar structure. In other words, a ...

  4. 1,3-dipole - Wikipedia

    en.wikipedia.org/wiki/1,3-dipole

    A demonstration that how some well known 1,3-dipoles like ozone, nitro compounds and azides can be shown to have a resonance structure having 1,3 relationship between positive and negative formal charges. Known 1,3-dipoles are: Azides (RN 3) Ozone (O 3) Nitro compounds (RNO 2) Diazo compounds (R 2 CN 2) Some oxides. Azoxide compounds (RN(O)NR)

  5. Stereoelectronic effect - Wikipedia

    en.wikipedia.org/wiki/Stereoelectronic_effect

    In another case, the stereoelectronic effect can result in an increased contribution of one resonance structure over another, which leads to further consequences in reactivity. For 1,4- benzoquinone monoxime, there are significant differences in the physical properties and reactivities between C2-C3 double bond and C5-C6 double bond.

  6. Natural resonance theory - Wikipedia

    en.wikipedia.org/wiki/Natural_Resonance_Theory

    Operationally, there are three ways in which alternative resonance structures may be generated: (1) from the LEWIS option, considering the Wiberg bond indices; (2) from the delocalization list; (3) specified by the user. [1] Below is an example of how NRT may generate a list of resonance structures.

  7. Mesomeric effect - Wikipedia

    en.wikipedia.org/wiki/Mesomeric_effect

    In chemistry, the mesomeric effect (or resonance effect) is a property of substituents or functional groups in a chemical compound.It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone pair of electrons present on an adjacent atom. [1]

  8. Carboxylate - Wikipedia

    en.wikipedia.org/wiki/Carboxylate

    The negative charge that is left after deprotonation of the carboxyl group is delocalized between the two electronegative oxygen atoms in a resonance structure. If the R group is an electron-withdrawing group (such as –CF 3), the basicity of the carboxylate will be further weakened. [1]: 264–5

  9. Nitrile ylide - Wikipedia

    en.wikipedia.org/wiki/Nitrile_ylide

    The 3-dimensional structure of the nitrilium ylide itself may also provide a clue as to the most appropriate resonance structure, with a linear R–C≡N–C unit supportive of the charge distribution indicated for resonance structures 1a & 1b and also consistent with the nomenclature nitrilium ylide.