When.com Web Search

  1. Ads

    related to: example of rotation in geometry in real life pdf class

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Rotation of an object in two dimensions around a point O. Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point.

  3. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .

  4. Orientation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orientation_(geometry)

    The rotations were described by orthogonal matrices referred to as rotation matrices or direction cosine matrices. When used to represent an orientation, a rotation matrix is commonly called orientation matrix, or attitude matrix. The above-mentioned Euler vector is the eigenvector of a rotation matrix (a rotation matrix has a unique real ...

  5. Active and passive transformation - Wikipedia

    en.wikipedia.org/wiki/Active_and_passive...

    A rotation of the vector through an angle θ in counterclockwise direction is given by the rotation matrix: = (⁡ ⁡ ⁡ ⁡), which can be viewed either as an active transformation or a passive transformation (where the above matrix will be inverted), as described below.

  6. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. [ 1 ] By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry ), and orientation ...

  7. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...

  8. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    A rotation can be represented by a unit-length quaternion q = (w, r →) with scalar (real) part w and vector (imaginary) part r →. The rotation can be applied to a 3D vector v → via the formula = + (+). This requires only 15 multiplications and 15 additions to evaluate (or 18 multiplications and 12 additions if the factor of 2 is done via ...

  9. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    For example, in 2-space n = 2, a rotation by angle θ has eigenvalues λ = e iθ and λ = e −iθ, so there is no axis of rotation except when θ = 0, the case of the null rotation. In 3-space n = 3 , the axis of a non-null proper rotation is always a unique line, and a rotation around this axis by angle θ has eigenvalues λ = 1, e iθ , e ...

  1. Ad

    related to: example of rotation in geometry in real life pdf class