Search results
Results From The WOW.Com Content Network
A simple switched-capacitor parasitic-sensitive integrator. Switched-capacitor simulated resistors can replace the input resistor in an op amp integrator to provide accurate voltage gain and integration. One of the earliest of these circuits is the parasitic-sensitive integrator developed by the Czech engineer Bedrich Hosticka. [3]
A thyristor-switched capacitor (TSC) is a type of equipment used for compensating reactive power in electrical power systems. It consists of a power capacitor connected in series with a bidirectional thyristor valve and, usually, a current limiting reactor ( inductor ).
Switches typically have a capacitance ratio of 30 or higher, while switched capacitors and varactors have a capacitance ratio of about 1.2 to 10. The loaded Q factor is between 20 and 50 in the X-, Ku- and Ka-band. [9] RF MEMS switched capacitors are capacitive fixed-fixed beam switches with a low capacitance ratio.
Typically, an SVC comprises one or more banks of fixed or switched shunt capacitors or reactors, of which at least one bank is switched by thyristors. Elements which may be used to make an SVC typically include: Thyristor-controlled reactor (TCR), where the reactor may be air- or iron-cored; Thyristor-switched capacitor (TSC) Harmonic filter(s)
In the second stage the circuit is reconfigured so that the capacitor is in series with the supply and the load. This doubles the voltage across the load - the sum of the original supply and the capacitor voltages. The pulsing nature of the higher voltage switched output is often smoothed by the use of an output capacitor.
Cross-coupled switched-capacitor voltage doubler. Cross-coupled switched capacitor circuits come into their own for very low input voltages. Wireless battery driven equipment such as pagers, bluetooth devices and the like may require a single-cell battery to continue to supply power when it has discharged to under a volt. [18]
Switching converters or switched-mode DC-to-DC converters store the input energy temporarily and then release that energy to the output at a different voltage, which may be higher or lower. The storage may be in either magnetic field storage components (inductors, transformers) or electric field storage components (capacitors).
The switch must, of course, be opened again fast enough to prevent the capacitor from discharging too much. The basic principle of a boost converter consists of 2 distinct states (see Figure 2): In the on-state, the switch S (see Figure 1) is closed, resulting in an increase in the inductor current;