Search results
Results From The WOW.Com Content Network
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the polynomial or to its terms. For example, the term 2x in x 2 + 2x + 1 is a linear term in a quadratic polynomial.
the multiplicative order, that is, the number of times the polynomial is divisible by some value; the order of the polynomial considered as a power series, that is, the degree of its non-zero term of lowest degree; or; the order of a spline, either the degree+1 of the polynomials defining the spline or the number of knot points used to ...
In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset. [ 1 ] Given a set of n + 1 data points (
The expression + + , especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two. In elementary mathematics a polynomial and its associated polynomial function are rarely distinguished and the terms quadratic function and quadratic polynomial are nearly synonymous and ...
The resulting polynomial is not a linear function of the coordinates (its degree can be higher than 1), but it is a linear function of the fitted data values. The determinant, permanent and other immanants of a matrix are homogeneous multilinear polynomials in the elements of the matrix (and also multilinear forms in the rows or columns).
Any polynomial written in standard form has a unique constant term, which can be considered a coefficient of . In particular, the constant term will always be the lowest degree term of the polynomial. This also applies to multivariate polynomials. For example, the polynomial
A polynomial matrix over a field with determinant equal to a non-zero element of that field is called unimodular, and has an inverse that is also a polynomial matrix. Note that the only scalar unimodular polynomials are polynomials of degree 0 – nonzero constants, because an inverse of an arbitrary polynomial of higher degree is a rational function.