Ad
related to: convex function vs concave graph examples
Search results
Results From The WOW.Com Content Network
A graph of the bivariate convex function x 2 + xy + y 2. Convex vs. Not convex. In mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above or on the graph between the two points. Equivalently, a function is convex if its epigraph (the set of points on or ...
A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.
The hypograph of a function is empty if and only if is identically equal to negative infinity. A function is concave if and only if its hypograph is a convex set. The hypograph of a real affine function: is a halfspace in +.
Epigraph of a function A function (in black) is convex if and only if the region above its graph (in green) is a convex set.This region is the function's epigraph. In mathematics, the epigraph or supergraph [1] of a function: [,] valued in the extended real numbers [,] = {} is the set = {(,) : ()} consisting of all points in the Cartesian product lying on or above the function's graph. [2]
A convex curve (black) forms a connected subset of the boundary of a convex set (blue), and has a supporting line (red) through each of its points. A parabola, a convex curve that is the graph of the convex function () = In geometry, a convex curve is a plane curve that has a supporting line through each of its points.
A function is convex if and only if its epigraph, the region (in green) above its graph (in blue), is a convex set.. Let S be a vector space or an affine space over the real numbers, or, more generally, over some ordered field (this includes Euclidean spaces, which are affine spaces).
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
Convex functions are related to convex sets. Specifically, the function is convex if and only if its epigraph. A function (in black) is convex if and only if its epigraph, which is the region above its graph (in green), is a convex set. A graph of the bivariate convex function + +.