Search results
Results From The WOW.Com Content Network
The resulting image is larger than the original, and preserves all the original detail, but has (possibly undesirable) jaggedness. The diagonal lines of the "W", for example, now show the "stairway" shape characteristic of nearest-neighbor interpolation. Other scaling methods below are better at preserving smooth contours in the image.
The complex wavelet transform variant of the SSIM (CW-SSIM) is designed to deal with issues of image scaling, translation and rotation. Instead of giving low scores to images with such conditions, the CW-SSIM takes advantage of the complex wavelet transform and therefore yields higher scores to said images. The CW-SSIM is defined as follows:
When the guidance image is the same as the filtering input .The guided filter removes noise in the input image while preserving clear edges. Specifically, a “flat patch” or a “high variance patch” can be specified by the parameter of the guided filter.
The image is convolved with Gaussian filters at different scales, and then the difference of successive Gaussian-blurred images are taken. Keypoints are then taken as maxima/minima of the Difference of Gaussians (DoG) that occur at multiple scales. Specifically, a DoG image (,,) is given by
Adaptive histogram equalization (AHE) is a computer image processing technique used to improve contrast in images. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image.
Similarity between images is determined by comparing the values of the census transform for corresponding pixels, using the Hamming distance. [3] Several variations of the algorithm exist, using different size of the window, order of the neighbours in the pattern (row-wise, clockwise, counterclockwise), comparison operator (greater, greater or ...
In image processing, the input is an image and the output is an image as well, whereas in computer vision, an image or a video is taken as an input and the output could be an enhanced image, an understanding of the content of an image or even behavior of a computer system based on such understanding.
Semi-global matching (SGM) is a computer vision algorithm for the estimation of a dense disparity map from a rectified stereo image pair, introduced in 2005 by Heiko Hirschmüller while working at the German Aerospace Center. [1]