Search results
Results From The WOW.Com Content Network
Inhalation of liquid (water), usually causing laryngospasm and suffocation caused by water entering the lungs and preventing the absorption of oxygen leading to cerebral hypoxia. [3] Avoid out of air emergencies underwater. Use of a redundant emergency breathing gas supply [5] Provide appropriate buoyancy.
In an oxygen system the presence of oxygen is implied, and in a sufficiently high partial pressure of oxygen, most materials can be considered fuel. Potential ignition sources are present in almost all oxygen systems, but fire hazards can be mitigated by controlling the risk factors associated with the oxygen, fuel, or heat, which can limit the ...
Oxygen toxicity is a condition resulting from the harmful effects of breathing molecular oxygen (O 2) at increased partial pressures.Severe cases can result in cell damage and death, with effects most often seen in the central nervous system, lungs, and eyes.
Note 2: A liquid in Division 6.1 meeting criteria for Packing Group I, Hazard Zones A or B stated in paragraph (a)(2) of this section is a material poisonous by inhalation subject to the additional hazard communication requirements in 49CFR 172.203(m)(3), 49CFR 172.313 and Table 1 of 49CFR 172.504(e) of this subchapter.
Excessive exposure to oxygen can lead to oxygen toxicity, also known as oxygen toxicity syndrome, oxygen intoxication, and oxygen poisoning.There are two main ways in which oxygen toxicity can occur: exposure to significantly elevated partial pressures of oxygen for a short period of time (acute oxygen toxicity), or exposure to more modest elevations in oxygen partial pressures but for a ...
There are also hazards of the specific diving environment, and hazards related to access to and egress from the water, which vary from place to place, and may also vary with time. Hazards inherent in the diver include pre-existing physiological and psychological conditions and the personal behaviour and competence of the individual.
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (14.5 psi).
Mixing by continuous blending: regulateed flow of oxygen is fed into a static mixer with air, analysed, and fed to the compressor inlet. The compressor and particularly the compressor oil, must be suitable for this service. If the oxygen fraction is less than 40%, some countries do not require the cylinder and valve to be cleaned for oxygen ...