When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    Transformers found their initial applications in natural language processing tasks, as demonstrated by language models such as BERT and GPT-3. By contrast the typical image processing system uses a convolutional neural network (CNN). Well-known projects include Xception, ResNet, EfficientNet, [15] DenseNet, [16] and Inception. [17]

  3. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    All transformers have the same primary components: Tokenizers, which convert text into tokens. Embedding layer, which converts tokens and positions of the tokens into vector representations. Transformer layers, which carry out repeated transformations on the vector representations, extracting more and more linguistic information.

  4. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Meta AI (formerly Facebook) also has a generative transformer-based foundational large language model, known as LLaMA. [48] Foundational GPTs can also employ modalities other than text, for input and/or output. GPT-4 is a multi-modal LLM that is capable of processing text and image input (though its output is limited to text). [49]

  5. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    The name "Transformer" was picked because Jakob Uszkoreit, one of the paper's authors, liked the sound of that word. [9] An early design document was titled "Transformers: Iterative Self-Attention and Processing for Various Tasks", and included an illustration of six characters from the Transformers animated show. The team was named Team ...

  6. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Operating on byte-sized tokens, transformers scale poorly as every token must "attend" to every other token leading to O(n 2) scaling laws, as a result, Transformers opt to use subword tokenization to reduce the number of tokens in text, however, this leads to very large vocabulary tables and word embeddings.

  7. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  8. Hugging Face - Wikipedia

    en.wikipedia.org/wiki/Hugging_Face

    The Transformers library is a Python package that contains open-source implementations of transformer models for text, image, and audio tasks. It is compatible with the PyTorch , TensorFlow and JAX deep learning libraries and includes implementations of notable models like BERT and GPT-2 . [ 16 ]

  9. Top-hat transform - Wikipedia

    en.wikipedia.org/wiki/Top-hat_transform

    In mathematical morphology and digital image processing, a top-hat transform is an operation that extracts small elements and details from given images.There exist two types of top-hat transform: the white top-hat transform is defined as the difference between the input image and its opening by some structuring element, while the black top-hat transform is defined dually as the difference ...