Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution for nonnegative-valued random variables. Up to rescaling, it coincides with the chi distribution with two degrees of freedom. The distribution is named after Lord Rayleigh (/ ˈ r eɪ l i /). [1]
The product is one type of algebra for random variables: Related to the product distribution are the ratio distribution, sum distribution (see List of convolutions of probability distributions) and difference distribution. More generally, one may talk of combinations of sums, differences, products and ratios.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
2) random variable, then X 1 + X 2 is a normal (μ 1 + μ 2, σ 2 1 + σ 2 2) random variable. The sum of N chi-squared (1) random variables has a chi-squared distribution with N degrees of freedom. Other distributions are not closed under convolution, but their sum has a known distribution:
The triangular distribution on [a, b], a special case of which is the distribution of the sum of two independent uniformly distributed random variables (the convolution of two uniform distributions). The trapezoidal distribution; The truncated normal distribution on [a, b]. The U-quadratic distribution on [a, b].
Random variables are assumed to have the following properties: complex constants are possible realizations of a random variable; the sum of two random variables is a random variable; the product of two random variables is a random variable; addition and multiplication of random variables are both commutative; and
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.