Ad
related to: axis of symmetry parabola formula worksheet answerstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The line perpendicular to the directrix and passing through the focus (that is, the line that splits the parabola through the middle) is called the "axis of symmetry". The point where the parabola intersects its axis of symmetry is called the "vertex" and is the point where the parabola is most sharply curved. The distance between the vertex ...
On a parabola, the sole vertex lies on the axis of symmetry and in a quadratic of the form: + + it can be found by completing the square or by differentiation. [2] On an ellipse, two of the four vertices lie on the major axis and two lie on the minor axis. [4]
Parabolas have only one focus, so, by convention, confocal parabolas have the same focus and the same axis of symmetry. Consequently, any point not on the axis of symmetry lies on two confocal parabolas which intersect orthogonally (see below). A circle is an ellipse with both foci coinciding at the center.
A three-dimensional version of parabolic coordinates is obtained by rotating the two-dimensional system about the symmetry axis of the parabolas. Parabolic coordinates have found many applications, e.g., the treatment of the Stark effect and the potential theory of the edges.
In a parabola, the axis of symmetry is perpendicular to each of the latus rectum, the directrix, and the tangent line at the point where the axis intersects the parabola. From a point on the tangent line to a parabola's vertex, the other tangent line to the parabola is perpendicular to the line from that point through the parabola's focus.
An oval with a horizontal axis of symmetry Smooth closed convex curves with an axis of symmetry , such as an ellipse or Moss's egg , may sometimes be called ovals . [ 28 ] However, the same word has also been used to describe the sets for which each point has a unique line disjoint from the rest of the set, especially in the context of ovals in ...
It is also given by the implicit equation x 2 − y 2 z = 0. {\displaystyle x^{2}-y^{2}z=0.} This formula also includes the negative z axis (which is called the handle of the umbrella).
The second term, / , gives the distance the roots are away from the axis of symmetry. If the parabola's vertex is on the -axis, then the corresponding equation has a single repeated root on the line of symmetry, and this distance term is zero; algebraically, the discriminant = .