Search results
Results From The WOW.Com Content Network
List of regular expression libraries Name Official website Programming language Software license Used by Boost.Regex [Note 1] Boost C++ Libraries: C++: Boost: Notepad++ >= 6.0.0, EmEditor: Boost.Xpressive Boost C++ Libraries: C++ Boost DEELX RegExLab: C++ Proprietary FREJ [Note 2] Fuzzy Regular Expressions for Java: Java: LGPL GLib/GRegex [Note 3]
In computer science, Thompson's construction algorithm, also called the McNaughton–Yamada–Thompson algorithm, [1] is a method of transforming a regular expression into an equivalent nondeterministic finite automaton (NFA). [2] This NFA can be used to match strings against the regular expression.
More generally, an equation E=F between regular-expression terms with variables holds if, and only if, its instantiation with different variables replaced by different symbol constants holds. [30] [31] Every regular expression can be written solely in terms of the Kleene star and set unions over finite words. This is a surprisingly difficult ...
Regular languages are a category of languages (sometimes termed Chomsky Type 3) which can be matched by a state machine (more specifically, by a deterministic finite automaton or a nondeterministic finite automaton) constructed from a regular expression. In particular, a regular language can match constructs like "A follows B", "Either A or B ...
If the portion of the regular expression is "greedy", it will match as many characters as possible. If it is not greedy, it will match as few characters as possible. By default, quantifiers in AWB are greedy. To make a quantifier non-greedy, it must be followed by a question mark. For example: In this string:
A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet Σ. Σ may be a human language alphabet, for example, the letters A through Z and other applications may use a binary alphabet (Σ = {0,1}) or a DNA alphabet (Σ = {A,C,G,T}) in bioinformatics .
A parsing expression is a kind of pattern that each string may either match or not match.In case of a match, there is a unique prefix of the string (which may be the whole string, the empty string, or something in between) which has been consumed by the parsing expression; this prefix is what one would usually think of as having matched the expression.
Rules have the form REGEXP { CODE } or REGEXP := CODE; where REGEXP is a regular expression and CODE is a block of C code. When REGEXP matches the input string, control flow is transferred to the associated CODE.