When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Capillary length - Wikipedia

    en.wikipedia.org/wiki/Capillary_length

    When the characteristic height of the liquid is sufficiently less than the capillary length, then the effect of hydrostatic pressure due to gravity can be neglected. [9] Using the same premises of capillary rise, one can find the capillary length as a function of the volume increase, and wetting perimeter of the capillary walls. [10]

  3. Jurin's law - Wikipedia

    en.wikipedia.org/wiki/Jurin's_Law

    ρ is the mass density (mass per unit volume); r 0 is the tube radius; g is the gravitational acceleration. It is only valid if the tube is cylindrical and has a radius (r 0) smaller than the capillary length (= / ()). In terms of the capillary length, the law can be written as

  4. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  5. Washburn's equation - Wikipedia

    en.wikipedia.org/wiki/Washburn's_equation

    The equation is derived for capillary flow in a cylindrical tube in the absence of a gravitational field, but is sufficiently accurate in many cases when the capillary force is still significantly greater than the gravitational force. In his paper from 1921 Washburn applies Poiseuille's Law for fluid motion in a circular tube.

  6. Eötvös number - Wikipedia

    en.wikipedia.org/wiki/Eötvös_number

    The Bond number can also be written as = (), where = / is the capillary length. A high value of the Eötvös or Bond number indicates that the system is relatively unaffected by surface tension effects; a low value (typically less than one) indicates that surface tension dominates. [ 8 ]

  7. Capillary number - Wikipedia

    en.wikipedia.org/wiki/Capillary_number

    Flow through the pores in an oil reservoir has capillary number values in the order of 10 −6, whereas flow of oil through an oil well drill pipe has a capillary number in the order of unity. [ 4 ] The capillary number plays a role in the dynamics of capillary flow ; in particular, it governs the dynamic contact angle of a flowing droplet at ...

  8. Capillary pressure - Wikipedia

    en.wikipedia.org/wiki/Capillary_pressure

    The Young–Laplace equation is the force up description of capillary pressure, and the most commonly used variation of the capillary pressure equation: [2] [1] = ⁡ where: is the interfacial tension is the effective radius of the interface

  9. Drop (liquid) - Wikipedia

    en.wikipedia.org/wiki/Drop_(liquid)

    The capillary length is a length scaling factor that relates gravity, density, and surface tension, and is directly responsible for the shape a droplet for a specific fluid will take. The capillary length stems from the Laplace pressure, using the radius of the droplet. Using the capillary length we can define microdrops and macrodrops.