Ads
related to: use and misuse of statistics worksheet 2 key answers
Search results
Results From The WOW.Com Content Network
Statistics, when used in a misleading fashion, can trick the casual observer into believing something other than what the data shows. That is, a misuse of statistics occurs when a statistical argument asserts a falsehood. In some cases, the misuse may be accidental. In others, it is purposeful and for the gain of the perpetrator.
In statistics, sampling bias is a bias in which a sample is collected in such a way that some members of the intended population have a lower or higher sampling probability than others. It results in a biased sample [1] of a population (or non-human factors) in which all individuals, or instances, were not equally likely to have been selected. [2]
The book is a brief, breezy illustrated volume outlining the misuse of statistics and errors in the interpretation of statistics, and how errors create incorrect conclusions. In the 1960s and 1970s, it became a standard textbook introduction to the subject of statistics for many college students.
Misuse of statistics can be both inadvertent and intentional, and the book How to Lie with Statistics, [74] by Darrell Huff, outlines a range of considerations. In an attempt to shed light on the use and misuse of statistics, reviews of statistical techniques used in particular fields are conducted (e.g. Warne, Lazo, Ramos, and Ritter (2012)). [75]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
In statistics, a misleading graph, also known as a distorted graph, is a graph that misrepresents data, constituting a misuse of statistics and with the result that an incorrect conclusion may be derived from it. Graphs may be misleading by being excessively complex or poorly constructed.
Pages in category "Misuse of statistics" The following 27 pages are in this category, out of 27 total. This list may not reflect recent changes. ...
Data dredging (also known as data snooping or p-hacking) [1] [a] is the misuse of data analysis to find patterns in data that can be presented as statistically significant, thus dramatically increasing and understating the risk of false positives.