Search results
Results From The WOW.Com Content Network
However, the elimination process results in a new system that possibly contains more inequalities than the original. Yet, often some of the inequalities in the reduced system are redundant. Redundancy may be implied by other inequalities or by inequalities in information theory (a.k.a. Shannon type inequalities).
Systems of linear inequalities can be simplified by Fourier–Motzkin elimination. [ 17 ] The cylindrical algebraic decomposition is an algorithm that allows testing whether a system of polynomial equations and inequalities has solutions, and, if solutions exist, describing them.
The system of equations and inequalities corresponding to the KKT conditions is usually not solved directly, except in the few special cases where a closed-form solution can be derived analytically. In general, many optimization algorithms can be interpreted as methods for numerically solving the KKT system of equations and inequalities. [7]
Normaliz computes lattice points in rational polyhedra, or, in other terms, solves linear diophantine systems of equations, inequalities, and congruences. Special tasks are the computation of lattice points in bounded rational polytopes and Hilbert bases of rational cones.
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011.
The constraint solver is used to constrain window behavior. For example, one can constrain two windows to have equal height, or to force the distance between two windows to be constant. In real time, the Cassowary constraint solver re-solves the system of equalities and inequalities and applies the new mathematical solution to the on-screen ...
Bernstein inequalities (probability theory) Boole's inequality; Borell–TIS inequality; BRS-inequality; Burkholder's inequality; Burkholder–Davis–Gundy inequalities; Cantelli's inequality; Chebyshev's inequality; Chernoff's inequality; Chung–Erdős inequality; Concentration inequality; Cramér–Rao inequality; Doob's martingale inequality
Consider the system of linear equations: L i = 0 for 1 ≤ i ≤ M, and variables X 1, X 2, ..., X N, where each L i is a weighted sum of the X i s. Then X 1 = X 2 = ⋯ = X N = 0 is always a solution. When M < N the system is underdetermined and there are always an infinitude of further solutions.