When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Greek mathematician Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today. He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, [5] and gave a remarkably accurate approximation of π. [80] [81]

  3. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  4. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  5. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    For example, many asymptotic expansions are derived from the formula, and Faulhaber's formula for the sum of powers is an immediate consequence. The formula was discovered independently by Leonhard Euler and Colin Maclaurin around 1735. Euler needed it to compute slowly converging infinite series while Maclaurin used it to calculate integrals.

  6. Fubini's theorem - Wikipedia

    en.wikipedia.org/wiki/Fubini's_theorem

    A related theorem is often called Fubini's theorem for infinite series, [1] although it is due to Alfred Pringsheim. [2] It states that if { a m , n } m = 1 , n = 1 ∞ {\textstyle \{a_{m,n}\}_{m=1,n=1}^{\infty }} is a double-indexed sequence of real numbers, and if ∑ ( m , n ) ∈ N × N a m , n {\textstyle \displaystyle \sum _{(m,n)\in ...

  7. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    Using calculus, e may also be represented as an infinite series, infinite product, ... The number e can be expressed as the sum of the following infinite series: = ...

  8. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    In mathematics, a series expansion is a technique that expresses a function as an infinite sum, or series, of simpler functions. It is a method for calculating a function that cannot be expressed by just elementary operators (addition, subtraction, multiplication and division).

  9. Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Grandi's_series

    In modern mathematics, the sum of an infinite series is defined to be the limit of the sequence of its partial sums, if it exists. The sequence of partial sums of Grandi's series is 1, 0, 1, 0, ..., which clearly does not approach any number (although it does have two accumulation points at 0 and 1). Therefore, Grandi's series is divergent