When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    Among properties of chords of a circle are the following: Chords are equidistant from the center if and only if their lengths are equal. Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle.

  3. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The angle between a chord and the tangent at one of its endpoints is equal to one half the angle subtended at the centre of the circle, on the opposite side of the chord (tangent chord angle). If the angle subtended by the chord at the centre is 90 ° , then ℓ = r √2 , where ℓ is the length of the chord, and r is the radius of the circle.

  4. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.

  5. Secant line - Wikipedia

    en.wikipedia.org/wiki/Secant_line

    A chord is the line segment that joins two distinct points of a circle. A chord is therefore contained in a unique secant line and each secant line determines a unique chord. In rigorous modern treatments of plane geometry, results that seem obvious and were assumed (without statement) by Euclid in his treatment, are usually proved.

  6. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    In geometry, an inscribed angle is the angle formed in the interior of a circle when two chords intersect on the circle. It can also be defined as the angle subtended at a point on the circle by two given points on the circle. Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint.

  7. Line segment - Wikipedia

    en.wikipedia.org/wiki/Line_segment

    Any straight line segment connecting two points on a circle or ellipse is called a chord. Any chord in a circle which has no longer chord is called a diameter, and any segment connecting the circle's center (the midpoint of a diameter) to a point on the circle is called a radius.

  8. Butterfly theorem - Wikipedia

    en.wikipedia.org/wiki/Butterfly_theorem

    The butterfly theorem is a classical result in Euclidean geometry, which can be stated as follows: [1]: p. 78 Let M be the midpoint of a chord PQ of a circle, through which two other chords AB and CD are drawn; AD and BC intersect chord PQ at X and Y correspondingly. Then M is the midpoint of XY.

  9. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .