When.com Web Search

  1. Ad

    related to: algebraic topology fulton mi football

Search results

  1. Results From The WOW.Com Content Network
  2. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism , though usually most classify up to homotopy equivalence .

  3. Grothendieck's Galois theory - Wikipedia

    en.wikipedia.org/wiki/Grothendieck's_Galois_theory

    In the above example, a connection with classical Galois theory can be seen by regarding ^ as the profinite Galois group Gal(F /F) of the algebraic closure F of any finite field F, over F. That is, the automorphisms of F fixing F are described by the inverse limit, as we take larger and larger finite splitting fields over F .

  4. William Fulton (mathematician) - Wikipedia

    en.wikipedia.org/wiki/William_Fulton_(mathematician)

    He is, as of 2011, a professor at the University of Michigan. [2] As of 2024, Fulton had supervised the doctoral work of 24 students at Brown, Chicago, and Michigan. Fulton is known as the author or coauthor of a number of popular texts, including Algebraic Curves and Representation Theory.

  5. Chern class - Wikipedia

    en.wikipedia.org/wiki/Chern_class

    There are various ways of approaching the subject, each of which focuses on a slightly different flavor of Chern class. The original approach to Chern classes was via algebraic topology: the Chern classes arise via homotopy theory which provides a mapping associated with a vector bundle to a classifying space (an infinite Grassmannian in this case).

  6. Localized Chern class - Wikipedia

    en.wikipedia.org/wiki/Localized_Chern_class

    In algebraic geometry, a localized Chern class is a variant of a Chern class, that is defined for a chain complex of vector bundles as opposed to a single vector bundle.It was originally introduced in Fulton's intersection theory, [1] as an algebraic counterpart of the similar construction in algebraic topology.

  7. Homotopy group - Wikipedia

    en.wikipedia.org/wiki/Homotopy_group

    In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group , denoted π 1 ( X ) , {\displaystyle \pi _{1}(X),} which records information about loops in a space .

  8. Lift (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Lift_(mathematics)

    A basic example in topology is lifting a path in one topological space to a path in a covering space. [1] For example, consider mapping opposite points on a sphere to the same point, a continuous map from the sphere covering the projective plane. A path in the projective plane is a continuous map from the unit interval [0,1]. We can lift such a ...

  9. Lefschetz hyperplane theorem - Wikipedia

    en.wikipedia.org/wiki/Lefschetz_hyperplane_theorem

    In mathematics, specifically in algebraic geometry and algebraic topology, the Lefschetz hyperplane theorem is a precise statement of certain relations between the shape of an algebraic variety and the shape of its subvarieties.