Search results
Results From The WOW.Com Content Network
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
The p-value does not indicate the size or importance of the observed effect. [2] A small p-value can be observed for an effect that is not meaningful or important. In fact, the larger the sample size, the smaller the minimum effect needed to produce a statistically significant p-value (see effect size).
To determine whether a result is statistically significant, a researcher calculates a p-value, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true. [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, .
Statistical significance is formalized in terms of probability, with its p-value measure being reported in the scientific literature as a screening mechanism. Ioannidis posited assumptions about the way people perform and report these tests; then he constructed a statistical model which indicates that most published findings are likely false ...
The p-value does not provide the probability that either the null hypothesis or its opposite is correct (a common source of confusion). [ 36 ] If the p -value is less than the chosen significance threshold (equivalently, if the observed test statistic is in the critical region), then we say the null hypothesis is rejected at the chosen level of ...
An important property of a test statistic is that its sampling distribution under the null hypothesis must be calculable, either exactly or approximately, which allows p-values to be calculated. A test statistic shares some of the same qualities of a descriptive statistic , and many statistics can be used as both test statistics and descriptive ...
Neglecting these events leads to a p-value that's too low. In fact, if the null hypothesis is true, then any significance level can be reached if one is allowed to keep collecting data and stop when the desired p-value (calculated as if one has always been planning to collect exactly this much data) is obtained. [7]
Although this p-value objectified research outcome, using it as a rigid cut off point can have potentially serious consequences: (i) clinically important differences observed in studies might be statistically non-significant (a type II error, or false negative result) and therefore be unfairly ignored; this often is a result of having a small ...