Search results
Results From The WOW.Com Content Network
An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the special case of an isosceles triangle by modern definition, creating more special properties.
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
A hyperbolic triangle embedded in a saddle-shaped surface. In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane.It consists of three line segments called sides or edges and three points called angles or vertices.
The 30°–60°–90° triangle is the only right triangle whose angles are in an arithmetic progression. The proof of this fact is simple and follows on from the fact that if α, α + δ, α + 2δ are the angles in the progression then the sum of the angles 3α + 3δ = 180°. After dividing by 3, the angle α + δ must be 60°. The right angle ...
The classical plane trigonometry problem is to specify three of the six characteristics and determine the other three. A triangle can be uniquely determined in this sense when given any of the following: [1] [2] Three sides (SSS) Two sides and the included angle (SAS, side-angle-side)
The sequence of Pythagorean triangles obtained from this formula has sides of lengths (3,4,5), (5,12,13), (16,30,34), (39,80,89), ... The middle side of each of these triangles is the sum of the three sides of the preceding triangle. [38]
These include the Calabi triangle (a triangle with three congruent inscribed squares), [11] the golden triangle and golden gnomon (two isosceles triangles whose sides and base are in the golden ratio), [12] the 80-80-20 triangle appearing in the Langley's Adventitious Angles puzzle, [13] and the 30-30-120 triangle of the triakis triangular tiling.
The largest equilateral triangle inscribed in a Reuleaux triangle is the one connecting its three corners, and the smallest one is the one connecting the three midpoints of its sides. The subset of the Reuleaux triangle consisting of points belonging to three or more diameters is the interior of the larger of these two triangles; it has a ...