When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram. The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the ...

  3. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    The most basic area formula is the formula for the area of a rectangle. ... It follows that the area of each triangle is half the area of the parallelogram: [2]

  4. Hooper's paradox - Wikipedia

    en.wikipedia.org/wiki/Hooper's_paradox

    The length of the shorter side at the right angle measures 2 units in the original shape but only 1.8 units in the rectangle. This means, the real triangles of the original shape overlap in the rectangle. The overlapping area is a parallelogram, the diagonals and sides of which can be computed via the Pythagorean theorem.

  5. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.

  6. Pappus's area theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_area_theorem

    Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem , is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it.

  7. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  8. Base (geometry) - Wikipedia

    en.wikipedia.org/wiki/Base_(geometry)

    By this usage, the area of a parallelogram or the volume of a prism or cylinder can be calculated by multiplying its "base" by its height; likewise, the areas of triangles and the volumes of cones and pyramids are fractions of the products of their bases and heights. Some figures have two parallel bases (such as trapezoids and frustums), both ...

  9. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = ⁠ 1 / 2 ⁠ × 2πr × r, holds for a circle.