When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  3. Orbital state vectors - Wikipedia

    en.wikipedia.org/wiki/Orbital_state_vectors

    Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.

  4. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  5. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. In this case, not only the distance, but also the speed, angular speed, potential and kinetic energy are constant. There is no periapsis or apoapsis. This orbit has no radial version.

  6. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    The escape velocity at a given height is times the speed in a circular orbit at the same height, (compare this with the velocity equation in circular orbit). This corresponds to the fact that the potential energy with respect to infinity of an object in such an orbit is minus two times its kinetic energy, while to escape the sum of potential ...

  7. Hohmann transfer orbit - Wikipedia

    en.wikipedia.org/wiki/Hohmann_transfer_orbit

    The diagram shows a Hohmann transfer orbit to bring a spacecraft from a lower circular orbit into a higher one. It is an elliptic orbit that is tangential both to the lower circular orbit the spacecraft is to leave (cyan, labeled 1 on diagram) and the higher circular orbit that it is to reach (red, labeled 3 on diagram).

  8. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    In the special case of perfectly circular orbits, the semimajor axis a is equal to the radius of the orbit, and the orbital velocity is constant and equal to = where: r is the circular orbit's radius in meters, This corresponds to 1 ⁄ √2 times (≈ 0.707 times) the escape velocity.

  9. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.