Search results
Results From The WOW.Com Content Network
A metric or distance function is a function d which takes pairs of points or objects to real numbers and satisfies the following rules: The distance between an object and itself is always zero. The distance between distinct objects is always positive. Distance is symmetric: the distance from x to y is always the same as the distance from y to x.
Distance measures are used in physical cosmology to give a natural notion of the distance between two objects or events in the universe.They are often used to tie some observable quantity (such as the luminosity of a distant quasar, the redshift of a distant galaxy, or the angular size of the acoustic peaks in the cosmic microwave background (CMB) power spectrum) to another quantity that is ...
A metric on a set X is a function (called the distance function or simply distance) d : X × X → R + (where R + is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions: d(x, y) ≥ 0 (non-negativity) d(x, y) = 0 if and only if x = y (identity of indiscernibles.
In standard cosmology, comoving distance and proper distance (or physical distance) are two closely related distance measures used by cosmologists to define distances between objects. Comoving distance factors out the expansion of the universe , giving a distance that does not change in time except due to local factors, such as the motion of a ...
That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [11] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [11]
Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...
The distance correlation is derived from a number of other quantities that are used in its specification, specifically: distance variance, distance standard deviation, and distance covariance. These quantities take the same roles as the ordinary moments with corresponding names in the specification of the Pearson product-moment correlation ...
Lunar distance LD ≈ 384 402 km. [10] Average distance between the center of Earth and the center of the Moon. astronomical unit au. Defined as 149 597 870 700 m. [11] Approximately the distance between the Earth and Sun. light-year ly ≈ 9 460 730 472 580.8 km. The distance that light travels in a vacuum in one Julian year. [12]