When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. DnaA - Wikipedia

    en.wikipedia.org/wiki/DnaA

    DnaA consists mainly in two different forms, the active ATP-form and the inactive ADP. [1] [3] The level of active DnaA within a cell is low immediately after a cell has divided. [1] Although the active form of DnaA requires ATP, the formation of the oriC/DnaA complex and subsequent DNA unwinding does not require ATP hydrolysis. [4]

  3. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    The energy used by human cells in an adult requires the hydrolysis of 100 to 150 mol/L of ATP daily, which means a human will typically use their body weight worth of ATP over the course of the day. [30] Each equivalent of ATP is recycled 1000–1500 times during a single day (150 / 0.1 = 1500), [29] at approximately 9×10 20 molecules/s. [29]

  4. Adenosine diphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_diphosphate

    ATP contains one more phosphate group than ADP, while AMP contains one fewer phosphate group. Energy transfer used by all living things is a result of dephosphorylation of ATP by enzymes known as ATPases. The cleavage of a phosphate group from ATP results in the coupling of energy to metabolic reactions and a by-product of ADP. [1]

  5. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The chemical energy stored in ATP (the bond of its third phosphate group to the rest of the molecule can be broken allowing more stable products to form, thereby releasing energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transportation of molecules across cell membranes.

  6. ABC transporter - Wikipedia

    en.wikipedia.org/wiki/ABC_transporter

    A model that describes the conformational changes in the nucleotide-binding domain (NBD) as a result of ATP binding and hydrolysis is the ATP-switch model. This model presents two principal conformations of the NBDs: formation of a closed dimer upon binding two ATP molecules and dissociation to an open dimer facilitated by ATP hydrolysis and ...

  7. Phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Phosphorylation

    Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...

  8. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    ATP synthase, also called complex V, is the final enzyme in the oxidative phosphorylation pathway. This enzyme is found in all forms of life and functions in the same way in both prokaryotes and eukaryotes. [67] The enzyme uses the energy stored in a proton gradient across a membrane to drive the synthesis of ATP from ADP and phosphate (P i).

  9. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    More recent structural data do however show that the ring and the stalk are structurally similar to the F 1 particle. [21] Conformation changes of ATP synthase during synthesis. The modular evolution theory for the origin of ATP synthase suggests that two subunits with independent function, a DNA helicase with ATPase activity and a H +

  1. Related searches indicate the uses for atp in the cell model of dna sequence is similar to two

    dna atp monomeradp through electron transport chain
    adenosine triphosphate dna processadenosine monophosphate vs adp