When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  3. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Find the Shortest Path: Use a shortest path algorithm (e.g., Dijkstra's algorithm, Bellman-Ford algorithm) to find the shortest path from the source node to the sink node in the residual graph. Augment the Flow: Find the minimum capacity along the shortest path. Increase the flow on the edges of the shortest path by this minimum capacity.

  4. Yen's algorithm - Wikipedia

    en.wikipedia.org/wiki/Yen's_algorithm

    The time complexity of Yen's algorithm is dependent on the shortest path algorithm used in the computation of the spur paths, so the Dijkstra algorithm is assumed. Dijkstra's algorithm has a worse case time complexity of O ( N 2 ) {\displaystyle O(N^{2})} , but using a Fibonacci heap it becomes O ( M + N log ⁡ N ) {\displaystyle O(M+N\log N ...

  5. k shortest path routing - Wikipedia

    en.wikipedia.org/wiki/K_shortest_path_routing

    The Floyd–Warshall algorithm solves all pairs shortest paths. Johnson's algorithm solves all pairs' shortest paths, and may be faster than Floyd–Warshall on sparse graphs. Perturbation theory finds (at worst) the locally shortest path. Cherkassky et al. [10] provide more algorithms and associated evaluations.

  6. Parallel single-source shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_single-source...

    A central problem in algorithmic graph theory is the shortest path problem.One of the generalizations of the shortest path problem is known as the single-source-shortest-paths (SSSP) problem, which consists of finding the shortest paths from a source vertex to all other vertices in the graph.

  7. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method. [8] [9] [10] In fact, Dijkstra's explanation of the logic behind the algorithm, [11] namely Problem 2.

  8. Euclidean shortest path - Wikipedia

    en.wikipedia.org/wiki/Euclidean_shortest_path

    These algorithms are based on two different principles, either performing a shortest path algorithm such as Dijkstra's algorithm on a visibility graph derived from the obstacles or (in an approach called the continuous Dijkstra method) propagating a wavefront from one of the points until it meets the other.

  9. Johnson's algorithm - Wikipedia

    en.wikipedia.org/wiki/Johnson's_algorithm

    The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...