When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parallel all-pairs shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_all-pairs...

    The Dijkstra algorithm originally was proposed as a solver for the single-source-shortest-paths problem. However, the algorithm can easily be used for solving the All-Pair-Shortest-Paths problem by executing the Single-Source variant with each node in the role of the root node. In pseudocode such an implementation could look as follows:

  3. Floyd–Warshall algorithm - Wikipedia

    en.wikipedia.org/wiki/Floyd–Warshall_algorithm

    The Floyd–Warshall algorithm is an example of dynamic programming, and was published in its currently recognized form by Robert Floyd in 1962. [3] However, it is essentially the same as algorithms previously published by Bernard Roy in 1959 [4] and also by Stephen Warshall in 1962 [5] for finding the transitive closure of a graph, [6] and is closely related to Kleene's algorithm (published ...

  4. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    The all-pairs shortest path problem finds the shortest paths between every pair of vertices v, v' in the graph. The all-pairs shortest paths problem for unweighted directed graphs was introduced by Shimbel (1953) , who observed that it could be solved by a linear number of matrix multiplications that takes a total time of O ( V 4 ) .

  5. Seidel's algorithm - Wikipedia

    en.wikipedia.org/wiki/Seidel's_algorithm

    Seidel's algorithm is an algorithm designed by Raimund Seidel in 1992 for the all-pairs-shortest-path problem for undirected, unweighted, connected graphs. [1] It solves the problem in (⁡) expected time for a graph with vertices, where < is the exponent in the complexity () of matrix multiplication.

  6. Johnson's algorithm - Wikipedia

    en.wikipedia.org/wiki/Johnson's_algorithm

    The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...

  7. Suurballe's algorithm - Wikipedia

    en.wikipedia.org/wiki/Suurballe's_algorithm

    The following example shows how Suurballe's algorithm finds the shortest pair of disjoint paths from A to F. Figure A illustrates a weighted graph G. Figure B calculates the shortest path P 1 from A to F (A–B–D–F). Figure C illustrates the shortest path tree T rooted at A, and the computed distances from A to every vertex (u).

  8. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Shortest path problem. Bellman–Ford algorithm: computes shortest paths in a weighted graph (where some of the edge weights may be negative) Dijkstra's algorithm: computes shortest paths in a graph with non-negative edge weights; Floyd–Warshall algorithm: solves the all pairs shortest path problem in a weighted, directed graph

  9. Parallel single-source shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_single-source...

    Example graph. Following is a step by step description of the algorithm execution for a small example graph. The source vertex is the vertex A and is equal to 3. At the beginning of the algorithm, all vertices except for the source vertex A have infinite tentative distances.