Search results
Results From The WOW.Com Content Network
The major products were ethyl chloride, tetrachlorocarbon and dichloromethane. [7] Because of concerns about health and environmentally relevant problems such as the ozone depletion behavior of light volatile chlorine compounds, the chemical industry developed alternative procedures that did not require chlorinated compounds. As a result of the ...
For example, consider radical bromination of toluene: [5] bromination of toluene with hydrobromic acid and hydrogen peroxide in water. This reaction takes place on water instead of an organic solvent and the bromine is obtained from oxidation of hydrobromic acid with hydrogen peroxide. An incandescent light bulb suffices to radicalize.
Bromotoluenes are aryl bromides based on toluene in which at least one aromatic hydrogen atom is replaced with a bromine atom. They have the general formula C 7 H 8–n Br n, where n = 1–5 is the number of bromine atoms.
The reaction mechanism for chlorination of benzene is the same as bromination of benzene. Iron(III) bromide and iron(III) chloride become inactivated if they react with water, including moisture in the air. Therefore, they are generated by adding iron filings to bromine or chlorine. Here is the mechanism of this reaction:
A halogen addition reaction is a simple organic reaction where a halogen molecule is added to the carbon–carbon double bond of an alkene functional group. [1]The general chemical formula of the halogen addition reaction is:
Benzonitrile is a useful solvent and a versatile precursor to many derivatives. It reacts with amines to afford N-substituted benzamides after hydrolysis. [3] It is a precursor to diphenylmethanimine via reaction with phenylmagnesium bromide followed by methanolysis.
Toluene (/ ˈ t ɒ l. j u iː n /), also known as toluol (/ ˈ t ɒ l. j u. ɒ l , - ɔː l , - oʊ l / ), is a substituted aromatic hydrocarbon [ 15 ] with the chemical formula C 6 H 5 CH 3 , often abbreviated as PhCH 3 , where Ph stands for the phenyl group.
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.