Search results
Results From The WOW.Com Content Network
In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model , it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.
In 1913, he provided the first postulates of what is now known as old quantum theory. [2] Using these postulates he obtained that for the hydrogen atom, the energy spectrum approaches the classical continuum for large n (a quantum number that encodes the energy of the orbit). [4] Bohr coined the term "correspondence principle" during a lecture ...
The Bohr model of the chemical bond took into account the Coulomb repulsion - the electrons in the ring are at the maximum distance from each other. [2] Thus, according to this model, the methane molecule is a regular tetrahedron, in which center the carbon nucleus locates, and in the corners - the nucleus of hydrogen. The chemical bond between ...
[10] [11] Niels Bohr explained around 1913 that electrons might revolve around a compact nucleus with definite angular momentum. [12] Bohr's model was an improvement on the 1911 explanations of Ernest Rutherford, that of the electron moving around a nucleus.
The Bohr model of the atom. Rutherford deduced the existence of the atomic nucleus through his experiments but he had nothing to say about how the electrons were arranged around it. In 1912, Niels Bohr joined Rutherford's lab and began his work on a quantum model of the atom. [38]: 19
The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In turn, at any distance from the nucleus smaller than a certain value, it would be impossible to establish an orbit. The minimum possible distance from the nucleus is called the Bohr radius. [39] De Broglie's treatment of the Bohr atom was ultimately unsuccessful, but his hypothesis served as a starting point for Schrödinger's wave equation.