When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binary logarithm - Wikipedia

    en.wikipedia.org/wiki/Binary_logarithm

    Every family of sets with n different sets has at least log 2 n elements in its union, with equality when the family is a power set. [30] Every partial cube with n vertices has isometric dimension at least log 2 n, and has at most ⁠ 1 / 2 ⁠ n log 2 n edges, with equality when the partial cube is a hypercube graph. [31]

  3. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.

  4. Iterated logarithm - Wikipedia

    en.wikipedia.org/wiki/Iterated_logarithm

    Demonstrating log* 4 = 2 for the base-e iterated logarithm. The value of the iterated logarithm can be found by "zig-zagging" on the curve y = log b (x) from the input n, to the interval [0,1]. In this case, b = e. The zig-zagging entails starting from the point (n, 0) and iteratively moving to (n, log b (n) ), to (0, log b (n) ), to (log b (n ...

  5. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    The first such distribution found is π(N) ~ ⁠ N / log(N) ⁠, where π(N) is the prime-counting function (the number of primes less than or equal to N) and log(N) is the natural logarithm of N. This means that for large enough N, the probability that a random integer not greater than N is prime is very close to 1 / log(N).

  6. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    The area of the blue region converges to Euler's constant. Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

  7. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    () = ⁡ ⁡ (), where ⁡ = = ⁡ (/), μ(n) is the Möbius function, li(x) is the logarithmic integral function, ρ indexes every zero of the Riemann zeta function, and li(x ⁠ ρ / n ⁠) is not evaluated with a branch cut but instead considered as Ei(⁠ ρ / nlog x) where Ei(x) is the exponential integral.