Ads
related to: categorical data analysis testsinsightsoftware.com has been visited by 100K+ users in the past month
- Jet For Dynamics AX Case
See how Jet Reports helps companies
with ERP Reporting for Dynamics AX
- Jet Reports Delivers More
Lear More About Jet Reports & How
it Soars Above the Competition
- Get a Custom Demo
Tired of your ERP reporting tools?
Try our products for yourself.
- Jet Reports AI Assistant
Learn more about Jet Reports AI
Asissant and See It in Action
- Jet For Dynamics AX Case
Search results
Results From The WOW.Com Content Network
This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables. General tests [ edit ]
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1]
The Cochran–Armitage test for trend, [1] [2] named for William Cochran and Peter Armitage, is used in categorical data analysis when the aim is to assess for the presence of an association between a variable with two categories and an ordinal variable with k categories.
In statistics, the Cochran–Mantel–Haenszel test (CMH) is a test used in the analysis of stratified or matched categorical data.It allows an investigator to test the association between a binary predictor or treatment and a binary outcome such as case or control status while taking into account the stratification. [1]
Pearson's chi-squared test or Pearson's test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates , likelihood ratio , portmanteau test in time series , etc.) – statistical ...
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...