Search results
Results From The WOW.Com Content Network
The sum of the members of a finite arithmetic progression is called an arithmetic series. For example, consider the sum: For example, consider the sum: 2 + 5 + 8 + 11 + 14 = 40 {\displaystyle 2+5+8+11+14=40}
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
Similarly, in a series, any finite rearrangements of terms of a series does not change the limit of the partial sums of the series and thus does not change the sum of the series: for any finite rearrangement, there will be some term after which the rearrangement did not affect any further terms: any effects of rearrangement can be isolated to ...
The case = coincides with that of the calculation of the arithmetic series, the sum of the first values of an arithmetic progression. This problem is quite simple but the case already known by the Pythagorean school for its connection with triangular numbers is historically interesting:
is a divergent series. Sequences dn + a with odd d are often ignored because half the numbers are even and the other half is the same numbers as a sequence with 2d, if we start with n = 0. For example, 6n + 1 produces the same primes as 3n + 1, while 6n + 5 produces the same as 3n + 2 except for the only even prime 2. The following table lists ...
An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory , especially in Bernoulli processes .
Particular examples of k-periodic number theoretic functions are the Dirichlet characters = modulo k and the greatest common divisor function () = (,). It is known that every k-periodic arithmetic function has a representation as a finite discrete Fourier series of the form