Ads
related to: concave vs convex angles calculator for kids worksheets
Search results
Results From The WOW.Com Content Network
An example of a concave polygon. A simple polygon that is not convex is called concave, [1] non-convex [2] or reentrant. [3] A concave polygon will always have at least one reflex interior angle—that is, an angle with a measure that is between 180 degrees and 360 degrees exclusive. [4]
For every concave kite there exist two circles tangent to two of the sides and the extensions of the other two: one is interior to the kite and touches the two sides opposite from the concave angle, while the other circle is exterior to the kite and touches the kite on the two edges incident to the concave angle. [27] For a convex kite with ...
Exterior angle – The exterior angle is the supplementary angle to the interior angle. Tracing around a convex n-gon, the angle "turned" at a corner is the exterior or external angle. Tracing all the way around the polygon makes one full turn, so the sum of the exterior angles must be 360°. This argument can be generalized to concave simple ...
If every internal angle of a simple polygon is less than a straight angle (π radians or 180°), then the polygon is called convex. In contrast, an external angle (also called a turning angle or exterior angle) is an angle formed by one side of a simple polygon and a line extended from an adjacent side. [1]: pp. 261–264
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]
A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.
A graph of the bivariate convex function x 2 + xy + y 2. Convex vs. Not convex. In mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above or on the graph between the two points.
An example of a convex polygon: a regular pentagon.. In geometry, a convex polygon is a polygon that is the boundary of a convex set.This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon.