Search results
Results From The WOW.Com Content Network
Big O notation characterizes functions according to their growth rates: different functions with the same asymptotic growth rate may be represented using the same O notation. The letter O is used because the growth rate of a function is also referred to as the order of the function .
The growth rate of a group is a well-defined notion from asymptotic analysis. To say that a finitely generated group has polynomial growth means the number of elements of length at most n (relative to a symmetric generating set) is bounded above by a polynomial function p(n). The order of growth is then the least degree of any such polynomial ...
The free abelian group has a polynomial growth rate of order d. The discrete Heisenberg group H 3 {\displaystyle H_{3}} has a polynomial growth rate of order 4. This fact is a special case of the general theorem of Hyman Bass and Yves Guivarch that is discussed in the article on Gromov's theorem .
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
In computability theory, computational complexity theory and proof theory, a fast-growing hierarchy (also called an extended Grzegorczyk hierarchy, or a Schwichtenberg-Wainer hierarchy) [1] is an ordinal-indexed family of rapidly increasing functions f α: N → N (where N is the set of natural numbers {0, 1, ...}, and α ranges up to some large countable ordinal).
Every function in the Grzegorczyk hierarchy is a primitive recursive function, and every primitive recursive function appears in the hierarchy at some level. The hierarchy deals with the rate at which the values of the functions grow; intuitively, functions in lower levels of the hierarchy grow slower than functions in the higher levels.
The growth function, also called the shatter coefficient or the shattering number, measures the richness of a set family or class of function. It is especially used in the context of statistical learning theory , where it is used to study properties of statistical learning methods.
Economic growth, the increase in value of the goods and services produced by an economy; Compound annual growth rate or CAGR, a measure of financial growth; Population growth rate, change in population over time; Growth rate (group theory), a property of a group in group theory