Search results
Results From The WOW.Com Content Network
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. ... (pronounced "sigma squared ...
The larger the variance, the greater risk the security carries. Finding the square root of this variance will give the standard deviation of the investment tool in question. Financial time series are known to be non-stationary series, whereas the statistical calculations above, such as standard deviation, apply only to stationary series.
The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed , and is called a normal deviate . Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not ...
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
Squared deviations from the mean (SDM) result from squaring deviations. In probability theory and statistics , the definition of variance is either the expected value of the SDM (when considering a theoretical distribution ) or its average value (for actual experimental data).
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
In probability theory and statistics, the coefficient of variation (CV), also known as normalized root-mean-square deviation (NRMSD), percent RMS, and relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution.